skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kai-Zhan Lee, Erica Cooper"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Building on previous work in subset selection of training data for text-to-speech (TTS), this work compares speaker-level and utterance-level selection of TTS training data, using acoustic features to guide selection. We find that speaker-based selection is more effective than utterance-based selection, regardless of whether selection is guided by a single feature or a combination of features. We use US English telephone data collected for automatic speech recognition to simulate the conditions of TTS training on low-resource languages. Our best voice achieves a human-evaluated WER of 29.0% on semantically-unpredictable sentences. This constitutes a significant improvement over our baseline voice trained on the same amount of randomly selected utterances, which performed at 42.4% WER. In addition to subjective voice evaluations with Amazon Mechanical Turk, we also explored objective voice evaluation using mel-cepstral distortion. We found that this measure correlates strongly with human evaluations of intelligibility, indicating that it may be a useful method to evaluate or pre-select voices in future work. 
    more » « less